أستغفر الله العظيم ... سبحان الله وبحمده



العودة   منتديات داماس > البوابه الهندسية > كتب هندسة مدني, معماري, ميكانيك وغيرهم > كتب الهندسة الطبية الحيوية والبيولوجية


مواضيع مميزة  


آخر عشرة مواضيع المواضيع النشطة


29-09-2014, 12:30 AM
سعد الدين متصل
المسؤول الفني
رقم العضوية: 3
تاريخ التسجيل: Mar 2003
الإقامة: Türkiye
المشاركات: 40,853
إعجاب: 9,073
تلقى 15,567 إعجاب على 5,204 مشاركة
تلقى دعوات الى: 5088 موضوع
    #1  

Approximation Methods for Polynomial Optimization: Models, Algorithms, and Applications


Approximation Methods for Polynomial Optimization: Models, Algorithms, and Applications



Approximation Methods Polynomial Optimization: Models,

Preface
Polynomial optimization, as its name suggests, is used to optimize a generic
multivariate polynomial function, subject to some suitable polynomial equality
and/or inequality constraints. Such problem formulation dates back to the nineteenth
century when the relationship between nonnegative polynomials and sum of squares
(SOS) was discussed by Hilbert. Polynomial optimization is one of the fundamental
problems in Operations Research and has applications in a wide range of areas,
including biomedical engineering, control theory, graph theory, investment science,
material science, numerical linear algebra, quantum mechanics, signal processing,
speech recognition, among many others. This brief discusses some important
subclasses of polynomial optimization models arising from various applications.
The focus is on optimizing a high degree polynomial function over some frequently
encountered constraint sets, such as the Euclidean ball, the Euclidean
sphere, intersection of co-centered ellipsoids, binary hypercube, general convex
compact set, and possibly a combination of the above constraints. All the models
under consideration are NP-hard in general. In particular, this brief presents a
study on the design and analysis of polynomial-time approximation algorithms,
with guaranteed worst-case performance ratios. We aim at deriving the worstcase
performance/approximation ratios that are solely dependent on the problem
dimensions, meaning that they are independent of any other types of the problem
parameters or input data. The new techniques can be applied to solve even broader
classes of polynomial/tensor optimization models. Given the wide applicability
of the polynomial optimization models, the ability to solve such models—albeit
approximately—is clearly benefifiial. To illustrate how such benefifis might be,
we present a variety of examples in this brief so as to showcase the potential
applications of polynomial optimization.



Shanghai, China Kowloon Tong, Hong Kong Minnesota, MN, USA



Zhening Li
Simai He
Shuzhong Zhang







Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others.




2012 -- ISBN-10: 1461439833 -- PDF -- 132 pages -- 4 MB




Download


http://mediafire.com/download/02/003/Approximat...timization.rar





المواضيع المشابهه
الموضوع كاتب الموضوع المنتدى مشاركات آخر مشاركة
Mathematical Biology II Spatial Models and Biomedical Applications سعد الدين كتب الهندسة الطبية الحيوية والبيولوجية 3 02-10-2014 04:19 PM
Statistical Models and Methods for Biomedical and Technical Systems سعد الدين كتب الهندسة الطبية الحيوية والبيولوجية 3 02-10-2014 04:11 PM
Intelligent Image and Video Interpretation: Algorithms and Applications سعد الدين كتب الهندسة الطبية الحيوية والبيولوجية 3 30-09-2014 06:21 PM
murray mathematical biology vol II spatial models biomedical applications 3ed 2003 سعد الدين كتب الهندسة الطبية الحيوية والبيولوجية 3 27-09-2014 11:39 PM
Computational Methods for Plasticity - Theory and Applications سعد الدين كتب هندسة مدني, معماري, ميكانيك وغيرهم 1 27-06-2014 02:17 AM
29-09-2014, 08:32 AM
raedms غير متصل
VIP
رقم العضوية: 81535
تاريخ التسجيل: May 2007
المشاركات: 23,957
إعجاب: 618
تلقى 4,106 إعجاب على 733 مشاركة
تلقى دعوات الى: 1330 موضوع
    #3  
جزاكَ الله خيراً


سبحان الله وبحمده سبحان الله العظيم


 


Approximation Methods for Polynomial Optimization: Models, Algorithms, and Applications

English

Powered by vBulletin® Version
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
The owner and operator of the site is not responsible for the availability of, or any content provided.
Topics that are written in the site reflect the opinion of the author.
جميع ما يُطرح من مواضيع ومشاركات تعبر عن رأي كاتبها ولا تعبر عن رأي مالك الموقع أو الإدارة بأي حال من الأحوال.